
Subway : Peer-To-Peer Clustering of Clients for Web Proxy

Kyungbaek Kim and Daeyeon Park

Department of Electrical Engineering & Computer Science,
Division of Electrical Engineering,

Korea Advanced Institute of Science and Technology (KAIST), Korea

Abstract

Many cooperated web cache systems and protocols
have been proposed. But, these systems need the ex-
pensive resources, such as core-link bandwidth and
proxy cpu or storage, and need administrative cost to
achive enough performance when the client popula-
tion increases. This paper suggests a self-organizable
caching system, called Subway, which is scalable and
fault tolerant, with a distributed peer-to-peer storage
as a backup storage. Subway reduces consumption of
expensive resources by using resources of participant
clients, which use the service of a central proxy. We
examine the performance of Subway via trace driven
simulations.

key words : Peer-To-Peer, Clustering, Web Caching,
Cooperated Caching

1. Introduction

The recent increase in popularity of the Web has led
to a considerable increase in the amount of traffic over
the Internet. As a result, the Web has now become one
of the primary bottlenecks to network performance.
Consequently, web caching has become an increas-
ingly important topic. Web caching aims to reduce net-
work traffic, server load, and user-perceived retrieval
delay by replicating popular contents on caches that
are strategically placed within the network. Browser
caches reside in the clients’ desktop, and proxy caches
are deployed on dedicated machines at the boundary
of corporate network and at Internet service providers.

By caching requests for a group of users, a proxy
cache can quickly return documents previously ac-
cessed by other clients. Just using one proxy cache has

the limitation of the enhancement of its performance,
because the hit rate of the proxy is limited by the cache
storage and the size of the client population. Multiple
proxies should cooperate with each other in order to
increase total client population, improve hit ratios, and
reduce document- access latency. That is the coopera-
tive caching.

Several cooperative-caching techniques has been
proposed [11], [10], [1], [2]. However, these stud-
ies need high bandwidth, expensive infrastructure
and high administrative cost. ICP-based cooperative
caches communicate with other caches which are con-
nected by busy core-links, to find requested objects
in other caches. Even if requested objects are not in
other caches, they spend bandwidth of core-links to
obtain requested objects from others. Some coopera-
tive caches use a proxy cluster, as a single big cache,
to be overprovisioned in order to handle bursty peak
loads. A growth in client population causes scalability
issues, leading to a need for increasing the cluster size.

In this paper, we suggest a new web cache ar-
chitecture which uses the resources of clients, called
Subway. Subway is the self-organizing caching sys-
tem with a distributed storage as a backup storage
and it is scalable and fault tolerant. Subway is com-
posed of two parts, a central proxy cache and a client-
cluster. The central cache is a simple proxy cache and
the client-cluster is a distributed storage. The client-
cluster is managed by Station application which uses
a DHT-based peer-to-peer protocol. This client-cluster
stores evicted objects from the central proxy. To com-
municate between the central cache and the client-
cluster Subway uses Backward-ICP which propagates
form central cache to client cluster. Subway thus
has the advantage of reducing consumption of core-
bandwidth and administrative cost. Moreover, Subway

enhances the overall performance of the proxy cache;
hit rate, byte hit rate, and bandwidth.

This paper is organized as follow. In section 2,
we describe cooperated web caching and peer-to-peer
lookup algorithm brifely. Section 3 introduce the de-
tail of Subway. The simulation environment and the
performance evaluation are given in section 4. We
mention other related works in section 5. Finally, we
conclude in section 6.

2. Background

2.1. Cooperated Web Caching

The basic operation of the web caching is simple.
Web browsers generate HTTP GET requests for Inter-
net objects such as HTML pages, images, mp3 files,
etc. These are serviced from the local web browser
caches, web proxy caches, or original content servers -
depending on which contain copies of requested ob-
jects. If the requested objects are in web browser
caches, clients don’t need to send GET requests. If
not, clients send GET requests to web proxy caches,
and so on. When closer cache to clients has the copy
of the requested object, we can reduce more bandwidth
consumption and more network traffic. The cache hit
rate should be maximized and the cost of a cache miss
should be minimized when designing a web caching
system.

The performance of a web caching system depends
on the size of its client comunity. When the user com-
munity increases, the probability of that a cached doc-
ument will soon be requested again increases. Hence,
caches sharing mutual trust may assist each other to in-
crease the hit rate. A caching architecture should pro-
vide the paradigm for proxies to cooperate efficiently
with each other. One approach to coordinate caches in
the same system is to set up a caching hierarchy. With
hierarchical caching, caches are placed at multiple lev-
els of the network. The another approach is a dis-
tributed caching system, where there are only caches
at the bottom level and there are no other intermediate
cache levels. In a hybrid scheme, caches may cooper-
ate with other caches at the same level or at a higher
level using distributed caching.

Internet Cache Protocol(ICP) [1] is a typical coop-
erating protocol for a proxy to communicate with other
proxies. The ICP operation is simple. If a requested

object is not founded in a local proxy, it sends ICP
queries to neighbor proxies; sibiling proxies and par-
ent proxies. The neighbor proxies receive the queries
and send ICP replies. The local proxy receives the
ICP replies and decides where to forward the request.
However, ICP wastes expensive resources; core band-
width and cache storage. Even if the neighbor caches
don’t have the requested object, ICP uses the core-
links, which is the inter-proxy links and very busy for
many clients to use many different Internet applica-
tions. Another protocol for distributed caching is the
Cache Array Routing Protocol (CARP) [2], which di-
vides the URL-space among and array of loosely cou-
pled caches and lets each cache store only the docu-
ments whose URL are hashed to it. Because of this
feature, every request is hashed and forwarded to se-
lected cache node. To do this, clients must know the
cache array information and the hash function. Ac-
cording to these, the management of CARP is difficult
and there are the other issues; such as load balancing,
fault tolerance and etc.

Another problem of CARP, same of ICP, is scalabil-
ity. Large corporate networks often employ a cluster of
machines, which has to usually be overprovisioned to
handle bursty peak loads. A growth in user population
cause leading to a need for hardware upgrades. This
scalability issue cannot be solved by ICP or CARP.

2.2. Peer-To-Peer Lookup

Peer-to-peer systems are distributed systems with-
out any centralized control or hierarchical organiza-
tion, where the software running at each node is
equibalent in functionality; redundant stoarage, selec-
tion of nearby servers, anonymity, search, and hierar-
chical naming. Despite this rich set of features, the
core operation in most peer-to-peer systems is efficient
location of data.

A number of peer-to-peer lookup protocols have
been recently proposed, such as Pastry [8], Chord [9],
CAN and Tapestry. In a self-organizing manner, these
protocols provide a distributed hash-table (DHT) that
reliably maps a given object key to a unique live node
in the network. Because DHT is made by hash func-
tion, each live node has same responsibility of data
storage and query load. If a node wants to find an
item, it just sends a query with the object key to the se-
lected node by the DHT. The length of routing is about

Figure 1. Overview of the Subway system

O(log n), where n is the number of nodes. According
to these properties, a system which uses peer-to-peer
lookup to locate data items, is scalable and does not
worry about node join or failure. Moreover, the sys-
tem balances data storage and query load, and provides
efficient routing of queries.

3. Subway Architecture

3.1. Overview of Subway

Subway is a self-organizing caching system with
a distributed storage as a backup storage and it is
scalable and fault tolerant, caused from the properties
of DHT based peer-to-peer system. It reduces core-
bandwidth usage and administrative cost. Subway is
composed of two parts, a central proxy cache and a
client-cluster. The central cache is an ordinary proxy
cache to store requested objects. The client-cluster
whose participants are clients in the same AS, is a
decentralized peer-to-peer storage to store evicted ob-
jects from the central cache, as a secondary storage for
the central cache. Each participated client has a web
browser and a Station program which is used for Sub-
way to use storage of clients.

Figure 1 shows the lookup operation of Subway
system. When a client sends a GET request to its
web browser, it lookups it web browser cache first.
If the requested object is not in the browser cache,
the browser sends the request to a central cache and
it checks wherether the object is in it. If the central
cache does not have the object, it sends Backward-
ICP Lookup request to the client-cluster. This Lookup
message is routed by a peer-to -peer protocol; in this

paper we use DHT based peer-to-peer lookup proto-
col. According to this behavior, Subway reduces usage
of expensive infrastructures, such as core-link band-
width, proxy-storage, and administrative cost.

3.2. Central Cache

The central cache acts as a simple proxy cache. It
locates at boundaries of corporate networks or at Inter-
net service providers and is managed by administrators
of networks or ISPs. As described before, a cache has
limited storage and evicts objects which will not be
used by clients to achive high performance; hit rate,
byte hit rate, and latency. In a normal proxy cache,
evicted objects are dropped, but in Subway, if a central
cache evicts objects, the central cache sends evicted
objects to the client-cluster to store them.

The basic operation of the central cache is as fol-
low; The central cache receives a request query from
a client which is in the same network where it locates.
If a cache hit occur, the requested object is returned to
the client, otherwise, the central cache sends a Lookup
message to the client-cluster. If the requested object
is in it, the central cache obtains the object , saves the
object and returns the object to the client. Otherwise,
the central cache sends a request message to an orig-
inal server. This behavior of central cache decreases
the probability of sending requests to original server or
cooperated caches, reduces core-bandwidth consump-
tion, and increases performance of central cache.

3.3. Client-Cluster

The main function of the client-cluster is backup
of the central cache by supporting resources of each
client; storage, cpu power, bandwidth, etc. Each par-
ticipant client needs another application whose name
is Station, not a web browser, to support this function.
A Station receives requests from the central cache and
performs proper jobs to assist it; in this cache system,
a Station checks whether there are requested objects
in local cache or forwards requests to other Station.
These Stations are managed by a DHT-based peer-to-
peer protocol. Each Station has the unique node key
and a DHT, that maps object keys to live node keys
for routing request queries. Like Figure 1, if a Station
receives a request, it gets the object key of requested
object and selects a next Station by using the DHT and

the object key. A seleted Station checks whether the
requested object is in local cache. If a hit occurs, the
Station returns the object to the central cache, other-
wise, just returns null and the central cache sends re-
quests to other servers which may have object copies.

This client-cluster is self-organizable, scalable and
fault tolerant, caused from the properties of peer-to-
peer protocols. When the number of clients increases,
the central cache get more storage to store evicted ob-
jects and achieve high performance; hit rate and byte
hit rate. When any client joins the network, this client
sends a join message to any other client and is in-
volved in the client-cluster by assigning the node key
and a DHT. When any client leaves the client-cluster
or fails, other clients detect the failure of the client
and repair their DHT. On both of situations, all par-
ticipant clients don’t exchange the whole of the saved
objects but just repair the DHT, because the objects
in the client-cluster are just backup objects which has
less popularity and locality than the objects which are
in the central cache. According to these features, Sub-
way reduces administrative cost and proposes the way
to manage a web caching system efficiently and easily.

3.4. Backward-ICP

Because there are two part, we need a protocol to
communicate with each others; that is the Backward-
ICP. Communication between the central cache and
the client-cluster is similar to that between the proxy
caches by using ICP. However, the Backward-ICP uses
local area networks rather than core-links and its di-
rection of propagation is reverse to ICP. When a cache
miss occurs in the central cache , it sends a Lookup
message to the client-cluster to find and obtain objects
without existance of the object.

This approach has a simple disadvantage; the big
miss penalty at the client-cluster. For this, the cen-
tral cache has the bloom filter which is used to check
whether there are requested objects in the client-
cluster or not.

4. Performance Evaluation

4.1. Simulation Setup

We perform trace-driven simulation for perfor-
mance evaluation of Subway. The trace from a proxy

(a) Hit rate

(b) Byte Hit Rate

Figure 2. performance comparison between
only proxy cache(cent) and Subway(back n)

cache in KAIST contains over 3.4million requests in a
single day. When the number of requests of the trace
is 0.7million, the number of objects is 0.48 million,
the total object size is 5.7GB, the infinite-hit rate is
68.78% and infinite-byte hit rate is 63.66%.

We assume the central cache is error-free and does
not cache the non cachable objects; dynamic data,
large size data, control data, etc. Every client has
the same storage, 10MB, for Station not web browser
cache and communicates each other by a peer-to-peer
lookup algorithm; we use Chord. In this simula-
tion, we don’t consider the effects of browser caches.
We use the bloom filter at the central cache to check
whether the requested objects are in the client-cluster
or not. By using this filter, we achieve near 100%
hit rate of the client-cluster and we reduce the local-
bandwidth consumption.

(a) Hit rate

(b) Byte Hit Rate

Figure 3. Hit rate comparison between only
proxy cache(cent n) and Subway(back n) with
variable client size

4.2. Hit Rate and Byte Hit Rate

Figure 2 shows the comparision of the hit rate and
the byte hit rate. In this figure, cent means using only
proxy cache and back-n means using Subway with n
hundred Stations(clients). The hit rate of only central
cache is greatly affected by the cache size, but the hit
rate of Subway achieves nearly infinite-hit rate without
any relationship to the central cache size. This means
Subway reduces core-bandwidth consumption and ad-
ministrative cost, because the cache performance is not
affected by the configuration of central cache.

In the byte hit rate, we can find the similar result
with the hit rate. However, in this case, Subway does
not get infinite-byte hit rate at the point of small sized
proxy cache. The reason of this result is that the large
size object whose size is bigger than the whole size

Client # Mean Req. Max Req. Dev.

100 1024 1369 2.2
200 602 733 2.4
300 401 510 2.5

Mean Byte Req. Max. Byte Req. Dev.

100 13422KB 316805KB 11.1
200 6711KB 315158KB 12.1
300 4474KB 314197KB 12.9

Table 1. Summary of Client Loads for Trace 1
with the 200MB proxy

of proxy cache storage and the size of Station storage,
10MB. If the Station storage is large, the byte hit rate
increases.

4.3. Client Size Effect

In this section, we show that Subway is scalable.
We assume every 100 client requests 0.35million re-
quests and simulates with variable client number. The
result is shown in Figure 3. In the result, the hit rate
when only the central cache is used does not increase
markedly. However, when we use Subway, the hit rate
increases by 30-40% over that when only the central
cache is used. Additionally, as the client number in-
creases, the hit rate increases accordingly. For byte
hit rate, Subway still has higher value than the central
cache, but the effect of the large size object also exist.
According to this result, using only central cache has
the limitation with any administrative cost, but using
Subway is scalable without other managements.

4.4. Client Load

We check the client loads, which are request num-
ber, stored size, stored objects, hit rate, etc, to verify
the client-cluster balance the storage and the request
queries. Table 1 shows the summary of request num-
ber and the size of the requested object. In the re-
sult, every client receives roughly same load, and when
the client number increases the load of each client de-
creases. The reason of this result is the properties of
DHT-base peer-to-peer protocols. In the byte request,
we find the effect of the large size object again and

we are convinced that is the only reason of the perfor-
mance degradation in the byte hit rate.

5. Related Works

Cooperative web caching is found to be useful
in improving hit rate in a group of small organiza-
tions. There are many forms such as hierarchical web
caching [1], hash-based clustering [2] and directory-
based scheme [5] and etc. These are efficient but need
high resources and high administrative cost to improve
the utility and the scalability of the caching system.
On the other hand, in our scheme, the client-cluster is
composed of residual resources of clients and the scal-
ability is the natural characteristic of the client-cluster.

Many peer-to-peer applications such as Napster,
Kazza and Morpheus, become popular. Additionally,
large area filesystems using peer-to-peer are proposed
such as PAST [4], CFS [3] and OceanStore [7]. The
target of these systems is the wide area network and
they have no concern about the characteristics of web
objects such as size, popularity and update frequency.

A similar proposal for our approach appeared in
Squirrel [6] is the decentralized web browser cache.
Squirrel fully distributes the web caches storage
among the browser caches of clients. According to
this fact, when the availability of clients is asymmet-
ric, some of bad clients decrease the total performance
of the Squirrel network. Additionally, all contents are
distributed and it is hard to manage the objects ac-
cording to the characteristics of web objects. In our
scheme, an web object is assigned to the proxy cache
or the client-cluster according to the popularity of the
object, which optimizes the overall performance of the
proxy cache.

6. Conclusions

We propose the new web cache system, Subway,
which is scalable , self-organizable, fault-tolerant and
easily managable. The performance of Subway is not
affected by the variation of the client population and
the configuration of the central proxy cache. More-
over, Subway uses efficiently the expensive resources,
such as core-bandwidth, proxy resources, etc.

In this paper, Subway is used for a web caching sys-
tem. However, we can extend the usage of Subway to
other proxy systems. When a proxy performs big jobs,

such as encoding/decoding or complex calculations,
for many clients, it uses the resources of the clients
to do jobs for them. Moreover, we can improve the
performance of the Subway. The first one is remov-
ing effect of large size objects and the second one is
the efficient replication of objects in the client-cluster.
These are our ongoing works.

References

[1] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell. A hierarchical internet
object cache. In proceedings of the 1996 Usenix Tech-
nical Conference, January 1996.

[2] J. Cohen, N. phadnis, V. valloppillil, and K. W.
Ross. Cache array routing protocol v 1.0.
http://www.ietf.org/internet-drafts/draft-vinod-
carp-v1-03.txt, September 1997.

[3] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with cfs. In
Proceedings of ACM SOSP 2001, 2001.

[4] P. Druschel and A. Rowstron. Past: A large-scale,
persistent peer-to-peer storage utility. In Proceedings
of HotOS VIII, 2001.

[5] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Sum-
mary cache: A scalable wide-area web cache shar-
ing protocol. In Proceedings of ACM SIGCOMM 98,
1998.

[6] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A
decentralized peer-to-peer web cache. In proceedings
of Principles of Distributed Computing’02, 2002.

[7] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton,
D. Geels, R. Gumadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An
architecture for global-scale persistent storage. In
Proceedings of ACM ASPLOS 2000, November 2000.

[8] A. Rowstron and P. Druschel. Pastry:scalable, de-
centralized object location and routing for large-scale
peer-to-peer systems. In Proceedings of the Inter-
national Conference on Distributed Systems Plat-
forms(Middleware), November 2001.

[9] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord a scalable peer-to-peer
lookup service for internet applications. In Proceed-
ings of ACM SIGCOMM, August 2001.

[10] J. Wang. A survey of web caching schemes for the
internet. ACM Computer Communication Review,
29(5):36–46, October 1999.

[11] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,
A. Karlin, and H. M. Levy. On the scale and per-
formance of cooperative web proxy caching. In Pro-
ceedings of the 17th ACM Symposium on Operating
Systems Principles, December 1999.

